
Temperature dependence of the effective mass of the interface polaron

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 1149

(http://iopscience.iop.org/0953-8984/2/5/009)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 10/05/2010 at 21:37

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/5
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter2(1990) 1149-1161. Printedin the UK 

Temperature dependence of the effective mass of the 
interface polaron 

You-Cheng Lit§ and Shi-Wei Gu$ 
t Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA 
$ Center of Theoretical Physics, Chinese Center of Advanced Science and Technology 
(World Laboratory), Beijing and Department of Physics, Jiao Tong University, Shanghai, 
People’s Republic of China 

Received 3 May 1989, in final form 22 August 1989 

Abstract. The temperature dependences of the effective mass and the self-energy of the 
interface polaron are investigated by means of the Lee-Low-Pines variation method. The 
influence of the electron interaction with both the bulk longitudinal optical (LO) and the 
surface optical (so) phonons on the temperature characteristic of the interface polaron is 
discussed. Numerical calculation, for GaAs-GaSb as an example, illustrates that both the 
effective mass and the self-energy will decrease with increasing temperature. Near the 
interface of crystals, the electron-so phonon interaction will play the main role in deter- 
mining the temperature behaviour of the interface polaron. 

1. Introduction 

Recently, there have been some new works on the investigation of the temperature 
dependence of the polaron mass [l-71. In these theoretical studies, the different mech- 
anisms of the electron-phonon interaction and the different theoretical approximation 
methods have provided two completely contrary conclusions. In early studies, Yokota 
[SI found that the polaron mass would decrease with increasing temperature by using 
the Hartree approximation. However, using the Gurari variation method, Fulton [9] 
reached the opposite conclusion. Up to now, the conclusions have not been identical. 
At low lattice temperature, some theories [ 1,2]  predicted the same result as did Yokota, 
while others [3,4] led to apolaron mass that would increase with increasing temperature. 

The polaron mass in crystals is usually determined by cyclotron resonance experi- 
ments in a weak magnetic field. For different materials the experimental results also 
showed the same two contrary conclusions. The experimental data in the silver halides 
illustrated that the mass would increase as the lattice temperature went up [lo]. In the 
cyclotron resonance measurements on GaAs-Gal -,AI,As heterojunctions, Brummell 
etuZ[ll] reported an anomalous case, i.e. the mass would increase with temperature up 
to about 100 K and start to decrease for higher temperature. 

With the wide application of heterojunctions and superlattices to technology, the 
electron-phonon interaction as the main factor to determine the temperature behaviour 
of the polaron has given rise to great interest. But only the temperature dependence of 
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Figure 1. Geometry of the interface between two 
polar crystals. 

the interaction between the quasi-free electron and the bulk longitudinal optical (LO) 
phonons has been investigated [6,12,13]. The magnetophonon resonance results in [ l l ]  
also produced phonon frequencies significantly below LO mode values. So, it could be 
suggested that the interaction between the electron and other phonon modes associated 
with the presence of the interface should be considered. 

Since the 1970s, the behaviour of the electron-phonon interaction near the surface 
or interface of the dielectric layer has been studied. For the first time, Lucas et a1 [14] 
took the electron-phonon interaction into account in their study on the bilayer system. 
Then Evans and Mills [15], by using the variation method, investigated the case where 
the electron interacted with both the surface and bulk LO waves and the phonons 
were considered as the only electric-dipole-active excitations. The importance of the 
electronic polarisability was first pointed out by Licari and Evrard [16]. Recently, with 
the consideration of the effect of electronic polarisability, Wendler [17] and Pen [18] 
deduced the equations for the polarisation eigenmodes of the dielectric bilayer system 
respectively from the microscopic dynamical equation and from the microscopic elec- 
trostatic potential. In these works, the authors developed the models of the electron- 
phonon interaction in the dielectric bilayer system and some of them also calculated the 
effective mass and interaction energies of the interface polaron in the limit of zero 
temperature. 

The purpose of this present paper is to explore the effect of the electron-phonon 
interaction on the temperature behaviour of the interface polaron. With both the 
electron-bulk LO phonon and the electron-so phonon interactions included, we obtain 
the expressions of the effective mass and the self-energy as functions of finite temperature 
by using the Lee-Low-Pines variation technique [ 191. From the calculations, for GaAs- 
GaSb as an example, it is found that the effective mass and self-energies will both 
decrease with increasing temperature. It is also learnt that when the electron approaches 
the surface or interface of crystals the temperature dependence of these quantities will 
be entirely determined by the SO mode effect. The results presented here give one the 
main features of the contribution of the electron-phonon interaction to the temperature 
characteristic of the interface polaron. The variation method used here provides a 
reasonable approximation for weakly and intermediately coupled polarons. 

2. The Hamiltonian 

Figure 1 gives an illustration of the problem we wish to consider. An interface between 
two polar crystals (such as GaAs-GaSb) is perpendicular to the z axis; the semi-infinite 
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space z > 0 is occupied by the crystal (GaAs) represented by label 'l', whereas the space 
z < 0 is full of another crystal (GaSb) represented by label '2'. A slow electron is placed 
inside the polar crystal 'l', a distance z ( z  > 0) from the interface. We assume the 
effective-mass approximation to be valid and, for the slowly moving electron, the effect 
of small and finite penetration of the electron through the interface to be negligible. 
Because our interest is directly to study the polaron's temperature behaviour quali- 
tatively, for simplicity we only consider the interaction between the electron and long- 
wave optical phonons without the influence of the electronic polarisability. With the 
above considerations, the Hamiltonian of the electron-phonon system in explicit form 
can be written as 

In equation (l), the first two terms are the kinetic energies of the electron in the directions 
perpendicular and parallel to the interface of the crystals, where m* is the band mass of 
the electron andKis its wavevector (in equation (1) the subscript 1 1  denotes the projection 
of a given vector onto a plane parallel to the interface). The third term represents the 
energy of the image potential, in which E, is the optical dielectric constant. From the 
theoretical viewpoint, undoubtedly, the image potential comes from the interaction 
between electron and surface phonons, which may be regarded as the macroscopical 
description of the complicated electron-so interaction near the transition layer between 
the two media and cannot be directly obtained from the electron-so interaction [HI.  
The image potential is proportional to ( E , ~  - E , ~ ) ;  when > E , ~  the positive value 
indicates repulsion, and when < E , ~  the negative value represents attraction. Since 
we are interested in discussing the polaron in a bound state near the interface, in this 
paper we only consider the case with E,, < E , ~ .  The fourth and fifth terms in equation 
(1) stand for the energy of the bulk LO and so phonon field, respectively. The last 
two terms describe the electron-bulk LO phonon and electron-so phonon interaction 
energies. In these expressions, a,' (a,) is the creation (annihilation) operator of the bulk 
LO phonon with frequency o1 and wavevector w ,  b; (b,)  is the corresponding operator 
for the so phonon with frequency w, and wavevector q. The coefficients V* and C* are 
given by 

4nhw e2 
~ * = i (  EV ) 

nhw,e2  
C* = i (7) 

and 
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where E~ is the static dielectric constant, and A and V are the interface area and the 
volume of crystal 'l', respectively. 

According to the variation treatment of Lee, Low and Pines [9], we begin by 
introducing the first canonical transformation U ' ,  which removes the coordinate 11 from 
the Hamiltonian 

The transformed Hamiltonian is obtained 

H' = U;' H U 1  

1 e -42 + 2 - sin(w,z)(V*al: + Vu,) + 2 - (C*b,+ + Cb,). (4) 
w w  4 v q  

Then we perform the second canonical transformation U2 

The operator U 2  describes the displacements of the lattice oscillators, in which the 
parametersf,f;, g, and g,* are treated as variational parameters, to be determined by 
the requirement that the energy of the system should be minimised. After some tedious 
but straightforward algebra, the transformed Hamiltonian is written in three parts 

H* = U;'H'U2 = H $  + H ;  + HZ 
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+ awb,f:g: + a w b , + f k ,  + aWf;lg,l2 + aLb,b,+fw 

+ a 3 , f w g , *  + a i b , + f w g ,  + a:fWIg,l2 + b,+b,lfw12 

+ bqgd l f w 1 2  + b,+g,Ifwl2 + l f w ! ~ l g , l ~ l ) .  (6c )  

We choose I{N[(w)},  {N, (q) } )  as the wavefunction to describe the phonon state, in 
which {NI( w)} and {N , (q ) }  represent the number of bulk LO and so phonons, respectively. 
In our study, the temperature is restricted to the range lower than room temperature. 
So, even though the phonon frequencies will decrease with increasing temperature, we 
approximately take them as constants due to their very small relative change (1Aw1/ 
w - 1%) [ l l ] .  On the other hand, for the weakly and intermediately coupled cases, 
because the interaction energies between the electron and phonons are much smaller 
than the phonon energies (hwl and hw,), we will omit them from the total energy of the 
phonons. As a result of these approaches, the eigenvalues of a:aw and b,+b, in the 
phonon state at finite temperature can be approximately expressed by the thermal 
equilibrium values 

N I  = (a :aw)  = [exp(hwl/kBT) - 11-l 

N2 = (b;  b,) = [exp(hw,/kB T )  - 1 I - I  
(7a)  
(7b) 

where kB is the Boltzmann constant. 
Finally, the expected value of H* referring to the phonon state is found as 

- 
H* = ({NI (w>), w, ( 4 ) )  lH* I CNs ( 4 ) } >  {NI (w)}) 
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It should be noted that, at finite temperature, we still assume that the successive 
virtual phonons around the electron are emitted individually, i.e. the interaction 
between the phonons with different frequencies can be neglected. So, HT , H ;  and the 
terms in H,* expressing the different phonon interactions are omitted. 

Because the direction of Kll is the only preferred direction in the plane parallel to the 
interface, to simplify the deduction, one may express f w  and g, in terms of the two 
quantities q and q z  defined by 

72KIl = L: lg,(4)124. (9) 
4 

rllK11 = c l f w ( W I , > l 2 W ~  

S H * / S f w  = S H * / S g ,  = 0. 

Inserting equation (9) into equation (8), the amplitudesf,,, andg, are determined by the 
variational condition that 

One finds that 
(10) 

and f :  andg; are the corresponding conjugate expressionsof equations ( l l a )  and (116). 
From equations (9), (1 la) and (1 16), we obtain the following implicit equations for 

v1 and r / 2  

Because we are interested only in the slow electron observed in experiments, we shall 
be content to calculate q and q 2  to first order in an expansion in powers of K11. On doing 
this, one readily obtains 

where 
q l  = a F B ( z ) / [ l  + a F B ( 2 ) 1  (13a) 
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In the above equations, the coupling constant cx and the polaron wavevectors ul and U ,  

are defined respectively by 

These expressions of the variation parameters and q 1, q 2  may be substituted back 
into equation (8). By expanding relative terms to the first power of Kll, we obtain the 
effective Hamiltonian, which is defined as the variational minimum of a* 
Herr = Min H* 

3. Effective mass and self-energies 

According to the standard definition of the polaron effective mass [20],  in equation (16) 
let 

Then we obtain the effective mass of the interface polaron as 

M * ( z )  = m*(1 - r l  - q 2  + r? + vi)- ' .  (17) 
For weakly and intermediately coupled polarons, we have aFB(z)  4 1 and aFs(z)  
Then the effective mass can be approximately expressed as 

1. 

M * ( z )  = m*[1 + a F B ( z )  + a F s ( z ) ] .  (18) 
For higher moments, it is clear that the effective mass becomes Klj-dependent, but 

we have here given only the Kll = 0 contribution, i.e. its value independent of Kll. In the 
zero-temperature limit, N I  and N 2  will obviously tend to zero and consequently FB(z) 
and Fs(z)  will also approach their values of zero temperature. So, the definition of the 
effective mass in the present paper is adequate because of no discrepancy between the 
expressions at zero and finite temperature. 

The last two terms in Her, (equation (16))  are self-energies E: and E: induced 
respectively by the electron-bulk LO phonon interaction and the electron-so phonon 
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interaction. Both quantities are functions of Kil, but for Kll = 0 their approach to limiting 
values will be independent of Kii. Setting Kii = 0 and transforming the summations into 
integrations, we obtain the expression of the self-energies 

The next step is to compute the expectation values of the effective mass and self- 
energies with reference to the wavefunction along the z coordinate. Just as mentioned 
earlier, we confine our attention only to a slow electron moving in crystal ‘1’ ( z  > 0). 
Because the tunnelling of electrons through the interface is ignored for weak and 
intermediate coupling, we take the wavefunction of the electron equal to zero on the 
interface and close to zero in an exponential manner as the electron moves to the 
interface. We use a variational method of calculation and choose for our trial wavefunc- 
tion 

where p is the variational parameter. This wavefunction is a special case of a more 
general form used in some papers [ 151. 

Consequently, one readily finds the expectation value of energy referring to q(z)  

E(KII) = ( & ) l f 4 f f l m ) .  (21) 
For the slow-moving electron, the general expression for E(KII) is cumbersome and of 
little general interest. We display explicitly only E(O), the energy at K ~ I  = 0, 

The last two terms are the expectation values of self-energies, (E:)  and (E:) ,  respect- 
ively. In these expressions, we have 

G(x)  = 
(x3 -3x5)1nx+0.5(nx6 + 5 x 5  -3nx4 +6x6 + x )  

(23a) (1 +x2)3 

and 

By utilising the variational wavefunction cp(z), the expectation value of effective 
mass can be directly obtained as 
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Table 1. Characteristic parameters of crystals. All the parameters are taken from [21]. 
Energies are in millielectronvolts and mo is the free-electron rest mass. 

~~~ ~~ 

EO E ,  fiw,(meV) hw,(meV) m3/mo (Y 

GaAs 12.83 10.9 35.03 36.7 0.0657 0.0681 
GaSb 15.69 14.44 29.28 29.8 0.047 0.0256 

T = O K  

T = 250 K 

Figure 2. Effect of LO mode, FB(z)  
I -------,-- (-), and of SO mode, Fs(z )  (---), 

60 120 180 on the effective mass as a function of co- 

r .250 K.>=-?- 
0 

z (AI ordinate z at different temperatures. 

where 
4u: W 2  

n o  
(FB(Z)) = -1 (1 - X 2 )  dx 

4. Results and discussion 

We have carried out a study of the effective mass and self-energies of the interface 
polaron at K11 = 0 by using the formulae obtained in Q 3. Taking GaAs-GaSb as an 
example, we calculate these quantities and their expectation values at different tem- 
peratures. 

The crystal characteristic parameters are related to the temperature. But for the 
temperature range ( T <  300 K) we wish to study in this paper, their changes with 
temperature are very small [21]. In our calculation, these parameters are assumed as 
constants and taken as the values at low temperature. Table 1 shows the relative 
parameters of GaAs and GaSb crystals. 

From equation (18), it is clear that the effective mass is determined by F,(Z) and 
Fs(z) ,  which represent the effect of the electron-bulk LO phonon interaction and the 
electron-so phonon interaction, respectively. Figure 2 gives a description of the vari- 
ation of FB(z) and Fs(z)  with coordinate z at different temperatures. It is shown that the 
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Figure3. Expectation value of the effective 
mass (M*(z))/m,,versus finite temperature 
T ( m ,  is the free-electron rest mass). 

0 100 200 300 

0.0660 

T ( K )  

t 

Figure 4. Comparison between the influ- 
ence of electron-bulk LO phonon inter- 

is" action and of electron-so phonon 
interaction on the expectation value of the 
effective mass: (-) ( F B ( z ) ) ,  the con- 

200 300 tribution of LO mode; (----) ( F s ( z ) ) ,  the 
contribution of SO mode. 

-\ -. .-. 
1.ox 10-6 .. 

T ( K l  

polarised electric field produced by the bulk LO mode is very weak in the vicinity of the 
interface, so its effect on the effective mass will tend to zero as the electron approaches 
the interface. On departure of the electron from the interface, the bulk LO mode 
contribution will increase and become dominant rapidly. On the contrary, only when 
the electron is very close to the interface will the so mode effect play the main role in 
influencing the effective mass. Thus, the temperature dependence of the effective mass 
will depend on the so mode effect near the crystal interface and on the bulk LO mode 
effect far from the interface. With increasing temperature, the uncorrelated motion of 
phonons becomes an important factor and the coherence between the electron motion 
and the phonon motion becomes weaker. This results in the weakness of the electron- 
phonon interaction, namely in the decrease of the mass with increasing temperature. As 
seen in figure 2, both bulk LO and so mode effects will be getting weaker when the 
temperature increases. 

Figure 3 shows that, as a result of the temperature behaviour of the electron-phonon 
interaction, the expectation value of the effective mass (M*(z))/mo will decrease with 
increasing temperature. As shown in figure 4, for the semi-infinite dielectriclayer system, 
such a variation of (M*(z) ) /m,  will be determined entirely by the contribution of the 
bulk LO phonon, and the so mode effect can be ignored. 

In [ 111, for GaAs-Gal-,Al,As heterojunctions, an anomalous increase in the pola- 
ron mass with increasing temperature was obtained. The experimental data also sug- 
gested that the dominant interaction of electrons would be with the modes associated 
with the presence of the interface. From the calculation of the polaron mass at finite 
temperature with the inclusion of full dynamical screening, Wu et a1 [6] theoretically 
obtained a temperature behaviour that qualitatively agreed with [ l l ] ,  but the results at 
100 K are quantitatively a factor of almost 2 smaller. With the so mode included in this 
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Figure 5 .  The expectation values of self- 
energies from the electron-Lo phonon 
interaction and the electron-so phonon 

0 100 2 00 300 interaction, respectively: (-) (E: ) ,  LO 
self-energy; (----) (E: ) ,  SO self-energy. 

0.002 

T ( K l  

paper, we find that in the two-dimensional limit ( z  + 0) the temperature behaviour of 
the polaron mass is really attributed to the so mode effect. Our numerical result is a bit 
smaller than the experimental data in [ll], and, since we have not taken the screening 
of the electron-phonon interaction into account, there is no anomalous increase at low 
temperature obtained in this paper. 

The self-energy consists of two parts, E: and E:, which are produced respectively 
by bulk LO mode effect and so mode effect. We also calculate their expectation values 
with reference to ~ ( z ) .  Figure 5 gives us a comparison between the energy of electron- 
LO phonon interaction (E:)  and that of the electron-so phonon interaction (E:). 
Obviously, in such a system we consider that the value of (E:) is very small and has 
almost no contribution to the temperature characteristic of the expectation value of the 
self-energy. So, the variation of (E:) will represent the temperature dependence of the 
total self-energy, i.e. as shown in figure 5 the self-energy will decrease when the tem- 
perature goes up. 

In our calculation, we have neglected the part of the Hamiltonian, namely HT 
(equation (6b) ) ,  that represents the electron’s recoil kinetic energy. The correlation 
between the emission of successive virtual phonons introduced by HT will set a limit to 
the validity of our method. Since we have no dimensional arguments to fall back on for 
estimating corrections to our results, the validity of our calculation may best be estimated 
by calculating the lowest-order correction to the energy resulting from H ;  . According 
to perturbation theory, the energy shift is given by 

where ZL2 is a sum over all the states in which HT has non-vanishing matrix elements, 
i.e. in which there are two phonons more than the phonons in the phonon state: IN1, 
N2). From equation (6b) ,  we readily find 
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where 

and 

with f ,  and g, given by equations (1 l a )  and (1 lb)  and N I  and N 2  given by equations (7a) 
and (7b). According to equations (26) and (27), our numerical calculations illustrate 
that the relative correction at T = 0 K may be the largest. So, we will only discuss the 
case in the limit of zero temperature to estimate the correction. Carrying out the 
indicated summations in equation (27) numerically up to order h2Ki/2m*, at T = 0 K,  
we get 

From equations (16) and (21), the expectation value of the energy in the zero-tem- 
perature limit can be obtained as 

1 
E -1.566a2hwl + 1.026 

Comparing the above numerical results, for a, = 3, we find the relative correction to the 
K,I-independent term of approximately 5.1 % ; the relative correction to theKll-dependent 
term is only 1.9%. On the other hand, for the existence of the electron-phonon bound 
state near the surface, the value of LY might be restricted to less than 2 [15]. On the 
whole, our variation method provides a reasonable approximation for the weakly and 
intermediately coupled interface polaron with a < 2. 
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